IPPC Model Synthesis Summary - Oct. 18, 2019 vers. 1.0Bronze Birch Borer Phenology (degree-day) ModelAgrilus anxius GoryDeveloped by Len Coop for use at Oregon State University's Integrated Plant Protection Center website: https://uspest.org/wea

This is an insect attacking and emerging from logs and timbers of birch (Betula spp.). Imported birch species tend to be more susceptible than native birch.

photo credits: OSU Ken Gray Image Collection, https://oregondigital.org/sets/ken-gray

Bronze Birch Borer Model Parameters:

Lower threshold: 43 degrees F (6.1 degrees C)

Upper threshold: 100 degrees F (37.8 degrees C) (nominal - none determined)

Start Date: Jan. 1st

Calculation Method: single sine

Model based on several sources, primarily Akers and Nielsen (1984), Muilenburg and Herms (2012), and four others.

Region of known use: Data and observations used for model development from Ohio, Michigan, Kentucky, Indiana, and Illinois

Validation status: A few observations from 5 states are in accordance with model predictions. Otherwise largely unvalidated. The model itself is based

on multiple years data from those states, some of which are approximate average date-based estimates

Table 1: Events and degree-days used in bronze birch borer (BBB) model:										
Event	DDs (F)	DDs (C)								
Prepupal larvae in overwintering cells in bark	250	139								
Beginning of pupation	400	222								
End of pupation	700	389								
First adults exit trees	750	417								
10% adult emergence	950	528								
50% adult emergence	1100	611								
Beginning of egg hatch and larval tunneling	1400	778								
90% adult emergence	1600	889								
Adult activity and egg hatch ended, larvae continue tunneling	2050	1139								

Source #1: Akers, RC and DG Nielsen. 1984. Predicting *Agrilus anxius* Gory (Coleoptera: Buprestidae) adult emergence by heat unit accumulation. JEE 77:1459-1463.

Notes: - OW usually as full grown larvae in pupal cell (or as young larvae if a 2 year life cycle)

- pupation in Ohio from late April to early May (Neiswander 1966)

- Main models were developed from Columbus and Wooster Ohio 1981-83 data, other locations were used for validation

- focused analysis on 10% emergence by monitoring exit holes in cut logs from European white birch (Betula pendula Roth).

- developed different lower thresholds and starting date models for data from Columbus and Wooster. The models therefore cannot be considered regionally robust.

Methods: Re-analyze data from Tables 2 and 3, Figs. 1 and 2 using available data sources:

1. Most daily Tmax and Tmin data from PRISM Data Expl	rer, http://prism.oregonstate.edu/explorer	Data available back to 1981.
2. For 1979 and 1980 data, use Climate Engine.	https://clim-engine.appspot.com/climateEngine	

3. Batch calculate single sine DDs using uspest.org custom DD calculation program available from:

and https://uspest.org/ipm/utilities.pl example calculation run:

./run_batch_dds2.pl station=COLUMOH year=1981 calc=S1 start=01-01 end=05-30 tlow=42 tlowmax=52 thi=100

(NOTE: either extensive modifications or a login at uspest.org may be required to run this program)

Results from this example can be found in first row of data in Table 2 below

https://uspest.org/ipm/run batch dds2.pl

Estimated w	eather	10% act	tual		· · · · , · ·	Tiow									
Station and		emerg.		Deg. C.	5.56	6.11	6.67	7.22	7.78	8.33	8.89	9.44	10.00	10.56	11.11
<u>Code</u>	<u>year</u>	DOY	Month-Day	Deg. F.	<u>42</u>	<u>43</u>	<u>44</u>	<u>45</u>	<u>46</u>	<u>47</u>	<u>48</u>	<u>49</u>	<u>50</u>	<u>51</u>	<u>52</u>
Columbus	-	1981	150 05-30-81	DDs (F):	1058.1	. 987.1	918.9	853.4	790.8	731.6	676	623.5	573.7	526.3	481.3
(COLUMOH)		1982	143 05-23-82		980.6	922.9	867.9	815.4	765.3	717.3	671.5	627.8	586	546.2	507.9
		1983	156 06-05-83		1088.7	1013.1	941.2	872.7	807.5	745.3	685.6	628.6	574.5	523.3	474.8
From Fig. 1 -	- Note h	igh initial emerge	ence June 3 1981 v	vith no prior cate	ch indicate pot	ential missing da	ata or bias and	potential earlie	r emergence	e; try a) ac	djust date	e earlier	by 3 day	/s to	
	May 30	0, b) eliminate th	iis year from analys	is. Favor option	n a) due to a pe	eriod of high tem	ips (Tmax rang	e 77-84 during	week prior t	o May 27t	th) so ter	nps wer	e favoral	ble	
	prior to	o this time and e	arlier initial emerge	nce was likely b	out missed. Fig	3 (Akers and N	ielsen) non-line	arity supports	this idea.						
Wooster		1981	148 05-28-81		1009.2	940.2	874	810.5	749.9	692.7	639.1	588.6	540.8	495.4	452.4
(WOOSTER	0	1982	145 05-26-82		1051.4	990.7	932.7	877.2	824.1	773.1	724.3	677.6	632.8	590	548.7
		1983	159 06-08-83		1153.7	1075	1000.2	928.7	860.5	795.3	732.5	672.7	615.9	562.1	511
1981 and 198	33: simil	ar interpretation	as Columbus 1981	; assume late e	stimate due to	missed observa	ations, adjust b	oth dates to 3 o	or 4 days ear	lier					
Cleveland		1981	154 06-03-81		973.4	905.1	840.3	778.3	719.4	663.2	610	559.7	512.3	467.6	425.6
(CLEVEL2OF	4	1983	161 06-10-83		996.1	. 919.6	847.2	778.4	713.2	652	594	539.5	488.6	441.3	397.4
suspect lake	effect u	nderestimated b	y PRISM – use war	mer Cleveland	rather than Pa	insville data									
Cincinnati		1982	139 05-19-82		1021.6	959.8	900.9	844.6	790.6	738.9	689.6	642.4	597.4	554.5	513.6
(CINCINNOF	ł)														
Wooster		1979	154 06-05-79		993.9	925.2	859	795.6	735.1	677.6	623.1	571.8	523.3	477.6	434.7
		1980	156 06-06-80		971.1	. <u>905.6</u>	843.3	783.8	727.3	673.5	622.3	573.4	527.2	483.5	442.5
Wooster		1998	142 05-22-98		1000.2	931.6	865.7	803.2	743.8	687.4	633.9	582.9	534.1	487.6	443.7
(WOOSTER	OH)	source:	https://kb.os	u.edu/bitstream	/handle/1811/7	1908/OARDC_	special_circula	r_n165.pdf?sec	quence=1#pa	age=79					
(assume first	emerg	4 days earlier the	an 10% emerg)												
	Result	s for Columbus	and Wooster	avg	1057.0	988.2	922.5	859.7	799.7	742.6	688.2	636.5	587.3	540.6	496.0
		1981-19	983 only:	sd	60.8	54.3	48.7	44.0	40.2	37.3	35.0	33.5	32.9	33.1	33.8
				CV	5.8	5.5 <mark>5.5</mark>	5.3	5.1	5.0	5.0	5.1	5.3	5.6	6.1	6.8
	Result	s including all da	ata:	avg	1024.8	956.3	890.9	828.5	769.0	712.3	658.5	607.4	558.9	513.0	469.5
				sd	54.5	51.3	48.9	47.2	46.0	45.3	44.8	44.5	44.4	44.4	44.3
				CV	5.3	5.4 <mark>5.4</mark>	5.5	5.7	6.0	6.4	6.8	7.3	8.0	8.7	9.4
							D	ronzo Diroh	Doror Lov		/				
								ta from Ako	DUIEI LUV	VESLU.V	V. 1Q1				
						_ 10.0	Da		ub_titlo	19611 19	04				
						9.0		5	up-uue						
	Fig. 1.	Lowest C.V. det	ermination for 10%	BBB emergeno	ce	9.8 Jarij									
		using d	ata from Table 2 ab	ove.		of of of other									
						0.1 lieut									
						Ö 5.0		1			1				

. .

43

44

45

46

47

Lower Threshold (Deg. F)

48

49

50

51

52

42

Results: When all data locations and years are included, the C.V. value continues to drop with Tlow before beginning to level off at 42-44F. At 43F, the C.V. is 5.3 versus 6.8 at 48F and 8.0 at 50F. These results indicate that a lower Tlow such as 43F may improve predictive power slightly versus 48 or 50F. Generally, lower Tlow values can accommodate more robust models including regions at lower latitudes where warmer Spring weather occurs. At a Tlow of 43F (6.1C), an average of 956 DDF (531 DDC) are required for 10% adult emergence (range: 905-1075 DDF).

Another rationale for using 43F rather than 48 or 50F: sources: https://www.thespruce.com/twelve-species-cultivars-of-birch-trees-3269660 https://www.thespruce.com/twelve-species-of-ash-trees-3269661

Birch growing zones 1 to 9 avg ca. 5 – temperate to very cold temperate regions Ash growing zones 2 to 9 avg ca. 7 – includes warmer growing regions so emerald ash borer may have a higher lower developmental threshold than bronze birch borer

Emerald ash borer (EAB) has been studied more extensively than BBB and has a Tlow of 50F (which should be re-examined); it may be possible that as a more cold adapted species, BBB would have a lower Tlow than EAB.

Source #2: Muilenburg, VL and DA Herms, 2012. A review of bronze birch borer (Coleoptera: Buprestidae) life history, ecology, and management. Env. Entomol. 41:1372-1385.

Fig. 2. Phenology of bronze birch borer (A. anxius) adult emergence at Midland, MI from 1986 to 1989. Emergence was ...

Fig. 2. Phenology of BBB adult emergence at Midland, MI from 1986-1989 (Muilenburg and Herms 2012) – based on appearance of new emergence holes

Methods: Re-analyze Fig. 2 data using:

1. Use Webplotdigitizer tool, https://automeris.io/WebPlotDigitizer/ – to extract data from Fig. 2

2. Convert data to cumulative emergence (separate spreadsheet page available on request). See Fig. 3 below.

3. Use DD calculator for PRISM data for MIDLANDMI to convert x-axis from dates to degree-days at 2 lower thresholds (48F and 43F).

4. Linearize the data using standard methods including a) use Log base 10 (DDs) and b) use logit transformation (+6) for % emergence (Fig 4 below shown for 43F)

Fig. 3. Convert data from Fig. 2 (Muilenburg and Herms 2012) to cumulative percent versus date (left) and DDs (right). Used to determine first (ca 1%), 10% (comparable to Akers and Nielsen data, source #1 above), 50% and 90% emergence dates. See Table 3 below for lowest C.V. estimation of Tlow.

Bronze Birch Borer Cumulative Emergence

Logit(% emerge) x Log10 Degree-Days (Tlow=43F)

Bronze Birch Borer Cumulative Emergence

Logit(% emerge) x Log10 Degree-Days (Tlow=43F)

Fig. 4. Linearization of data in Fig. 3 shown above for top: years kept separate and bottom: years combined with regression line.

Table 3. Lowest C.V. comparison of lower developmental thresholds 48, 45, and 43F, for first, 10%, 50%, and 90% emergence based on Fig. 2 of Muilenburg and Herms (2012)
Degree-days calculated from PRISM data and batch calculator tool described under source #1 above

Weather station		Approx.	DD	Approx.	DD	Approx.	DD	Approx.	DD
code: MIDLANDMI		First emerg.	Tlow=48F	10% emerg.	Tlow=48F	50% emerg.	Tlow=48F	90% emerg.	Tlow=48F
	1986	05/28/86	540	06/01/86	637	06/07/86	719	07/11/86	1364
	1987	05/20/87	435	05/26/87	515	06/02/87	713	06/25/87	1241
	1988	05/30/88	508	06/05/88	622	06/15/88	839	06/23/88	1033
	1989	06/14/89	672	06/22/89	796	06/28/89	951	07/12/89	1296
avg			538.8		642.5		805.5		1233.5
std			99.1		115.9		113.0		142.8
CV			18.4		18.0		14.0		11.6

		Approx.	DD	Approx.	DD	Approx.	DD	Approx.	DD
		First emerg.	Tlow=45F	10% emerg.	Tlow=45F	50% emerg.	Tlow=45F	90% emerg.	Tlow=45F
	1986	05/28/86	679	06/01/86	788	06/07/86	886	07/11/86	1630
	1987	05/20/87	553	05/26/87	650	06/02/87	870	06/25/87	1465
	1988	05/30/88	638	06/05/88	769	06/15/88	1013	06/23/88	1231
	1989	06/14/89	834	06/22/89	981	06/28/89	1155	07/12/89	1542
avg			676.0		797.0		981.0		1467.0
std			117.7		137.0		132.5		171.2
CV			17.4		17.2		13.5		11.7

		Approx.	DD	Approx.	DD	Approx.	DD	Approx.	DD	
		First emerg.	Tlow=43F	10% emerg.	Tlow=43F	50% emerg.	Tlow=43F	90% emerg.	Tlow=43F	
	1986	05/28/86	785	06/01/86	902	06/07/86	1011	07/11/86	1823	
	1987	05/20/87	642	05/26/87	751	06/02/87	985	06/25/87	1626	
	1988	05/30/88	738	06/05/88	880	06/15/88	1143	06/23/88	1376	
	1989	06/14/89	954	06/22/89	1118	06/28/89	1304	07/12/89	1719	
avg			779.8		912.8		1110.8		1636.0	
std			130.5		152.2		146.2		191.1	
CV			16.7		16.7		13.2		11.7	

Results: For approximate first, 10%, and 50% emergence, the Tlow=43F has slightly lower C.V. values than using a Tlow of 45 or 48F. The degree-day average for 10% emerge (913 DDF) is slightly lower than, but within range of, the value of 956 DDF obtained from Akers and Nielsen (see source #1 above).

Source #3: Mussey, G. J.; Potter, D. A. 1997. Phenological correlations between flowering plants and activity of urban landscape pests in Kentucky. Journal of Econ. Entomol. 90:1615-1627. https://www.sampforestpest.ento.vt.edu/miscellaneous/pdf/mussy-potter1997-misc.pdf

Methods: Use PRISM data for Lexington KY 1992-94 to test Tlow lowest C.V. values. Not sure if we should assume first emergence or peak activity

assoc. with plant phenology (3-yr avg date: May 22). Most likely assume "first activity" to be approximately equivalent to 10% emergence used by sources #1 and #2 above. A rationale for this assumption is that these are more casual observations of adults; not the daily monitoring for exit holes as was reported for sources #1 and #2 above.

Table 4. Lowest C.V. for first activity of bronze birch borer adult emergence, station LEXINGTKY, avg date May 22, 1992-94.

	Degree-days								
	Date		Tlow=42F	Tlow=43F	Tlow=44F	Tlow=45F	Tlow=46F	Tlow=47F	Tlow=48F
	1992	05/22/92	1218.8	1136.3	1057.6	983.4	913.2	846.1	782.6
	1993	05/22/93	1111.4	1035.6	963.4	894.5	828.8	766	706.1
	1994	05/22/94	1086	1010.8	938.3	868.4	801.6	738.2	678
avg			1138.7	1060.9	986.4	915.4	847.9	783.4	722.2
std			70.5	66.5	62.9	60.3	58.2	56.0	54.1
CV			6.2	6.3	6.4	6.6	6.9	7.2	7.5

Results: Assuming that this source is using first or early period activity (and data are not as well documented as source #1 or 2) then this result, from a state further south (KY), appears to be in overall agreement with results above, and that a Tlow of 43F is also a good choice with less error than a higher 48F threshold.

Source #4: Purdue Extension publication:

https://extension.entm.purdue.edu/publications/E-50/E-50.html

Life Cycle (assume region of Purdue, W. Lafayette Indiana)

- adults found crawling on sunny side of trunk during late May and early June; fly when black locust trees bloom
- eggs hatch in 2 weeks or less, larvae tunnel immediately into the phloem tissue to construct galleries
- one or two years to complete life cycle, larvae pupate in the xylem in late April or early May

Table 5. Average degree-days and C.V. values (compare Tlow=48F and 43F) for approximate events in BBB life cycle in Indiana (PRISM data station name: WLAFAYIN)

	Approximate Date										
approx		04-24	05-10	05-25	06-03	06-12					
event:		early pupate	late pupate	early adult	mid adult	late adult					
Year		Deg	ree-Days (Tlo	w=48 Tupper=	100F)						
	2010	348.7	534	744	990	1204					
	2011	220.8	364	623	793	1049					
	2012	547.8	768	1017	1238	1420					
	2013	183.4	395	652	820	996					
	2014	153.3	329	523	756	934					
	2015	198.7	401	618	781	994					
avg		275	465	696	896	1100					
std		150	164	172	187	182					
CV		54	35	25	21	17					
		De	egree-Days (Tl	ow=43 Tuppe	r=100F)						
	2010	506	760	1044	1335	1594					
	2011	358	569	899	1114	1414					
	2012	774	1062	1383	1648	1875					
	2013	300	584	906	1116	1338					
	2014	252	502	762	1040	1262					
	2015	322	586	871	1079	1336					
avg		419	677	978	1222	1470					
std		194	207	218	233	229					
CV		46	31	22	19	16					

Results:

ts: 1) A Tlow of 43F produces C.V. values lower than for a Tlow of 48F (keep in mind how coarse these data are)

2) C.V. values are very high overall and are higher for early events than later events.

3) Approx. events in DDF for early pupation, late pupation, early adult, mid adult, and late adult are estimated as: 419, 677, 978, 1222, and 1470 DDF (Tlow=43F)
4) Good correspondence with Akers and Nielsen estimates, "early adult" is approx. equivalent to "10% adult emergence", avg 978 DD vs avg 952 DD F (Tlow=43F)

Source #5. Herms DA (2003) A biological calendar for predicting pest activity: six years of plant and insect phenology in Secrest Arboretum, pp.40-49. In: J.A. Chatfield, J.F. Boggs, E.A. Draper, and P.J. Bennett (eds.), Ornamental plants: annual reports and research reviews 2002. Ohio Agricultural Research Development Center and The Ohio State University Extension Special Circular 189. https://kb.osu.edu/bitstream/handle/1811/71934/1/OARDC_special circular n189.pdf#page=42

- first emergence of adults coincides with blooming of sweetbay magnolia, Magnolia virginiana and with black locust, Robinia pseudoacacia From Table 1: Bronze birch borer adult emergence: 1997-2002 Avg date: 28-May, Earliest date: 18-May, Latest date: 12-Jun. 2002 date: 2-Jun Methods: Calculate DDF base 43 for years represented in the table entry. Determine which year was likely the early year and late years in this range.

Table 6. Estimated degree-days (Tlow=43) for a range of dates noted for BBB adult emergence observed between 1997 and 2002 in Wooster, OH.

		Dat	te	
approx.	05-18	05-28	06-12	06-02
emerge	earliest	average	latest	emerge
event	De	gree-Days (Tl	ow=43 Tuppe	r=100F) 2002 only
1997	459	587	865	
1998	841	1054	1339	
1999	701	854	1290	
2000	765	933	1247	
2001	672	828	1069	
2002	664	775	1147	903
avg		839		

Results: For adult emergence, both 2002 only with 903 DDF and average over 1997-2002 with 839 DDF (TLow=43F) correspond to other results fairly well. The early year may have been 1998 (warmest year) and the latest year may have been 1997 (coolest year).

Source #6: Bronze birch borer. The Morton Arboretum (Lisle, IL near Naperville and Chicago IL)

https://www.mortonarb.org/trees-plants/tree-and-plant-advice/help-pests/bronze-birch-borer

Life cycle notes:

- 1 generation per year
- adults lay eggs in late May or June
- eggs hatch in about 10 days
- larvae feed by tunneling on interior tissue of bark until fall, then form a cell at the end of a tunnel where they overwinter
- larvae pupate the following spring
- adults feed on foliage for about a week before laying eggs

Methods: Estimate the period between adult emergence and egg hatch is ca. 7 days plus 10 days = 17 days during late May and June Use PRISM data station named: LISLEIL for recent years (2012-2017) to esimate degree days for typical intervals.

Table 7. Estimated period for adult feeding and egg development for bronze birch borer for discriptive observations near Chicago, IL.

Year		DDs (Tlow=43F) May 20-Jun 6	DDs (Tlow=43F) Jun 3—Jur
	2012	426	511
	2013	369	405
	2014	445	459
	2015	343	463
	2016	469	494
	2017	345	543
average	e:	400	479

Results: Estimate ca. 400 to 480 DDF (Tlow=43) between adult exit and egg hatch. Use average of 450 DDF

20

Table 8. Combined results from all sources above

Source #		1	2	3	4	5		overall
Authors:		Akers & Nielsen 1984	Muilenburg & Herms 2012	Mussy & Potter	Purdue Extension	Herms 2003		averages
Location		various Ohio	Midland, Michigan	Lexington, Kentucky	W. Lafayette, Indiana	Wooster, Ohio		
Approx. latit	ude	39.1 to 41.7	43.6	38	40.4	40.7		
Event				Degree-Days	(Tlow=43F)			
early pupate	average				419			419
	N (site-years))			6			
late pupate	average				677			677
	N (site-years))			6			
1 st Emerge	average		779.8					780
I Emerge	C.V.		16.7					100
	0.11		2011					
ca. 10%	average	956.3	912.8	1060.9	978	;	839	949
emerge	min	905.1	751	1010.8				
-	max	1075	1118	1136.3				
	N (site-years)	12	4	3	6		6	
	C.V.	5.4	16.7	6.3	22		0	
ca. 50%	average		1110.8					1111
emerge	C.V.		13.2					
000/			1000 0		4.70			4550
ca. 90%	average		1636.0		1470			1553
emerge	C.V.		11.7		16			

Table 9. Current estimates for a degree-day model for Bronze birch borer from sources above:

Parameter	Deg. F.	Deg. C.
Lower Threshold	4	.3 6.1
Upper Threshold	10	0 37.8
Event:	DDs (F)	DDs (C)
Prepupal larvae in overwintering cells in bark	25	0 139
Beginning of pupation	40	0 222
End of pupation	70	0 389
First adults exit trees	75	0 417
10% adult emergence	95	0 528
50% adult emergence	110	0 611
Beginning of egg hatch and larval tunneling	140	0 778
90% adult emergence	160	0 889
Adult activity and egg hatch ended, larvae continue tunneling	205	0 1139

Validation Section – find and evaluate independent data including pubs, citizen science data, etc., websites including USA NPN, iNaturalist, CERIS Pest Tracker, and Bugwood Wiki. Currently, of these, data available from iNaturalist only.

Source #1: iNaturalist https://www.inaturalist.org/ A science app for sharing and verifying observations in nature

Methods: Compare all reports that appear valid (confirmed by others and have legible photos that match reference materials) with uspest.org model predictions using nearest weather stations.

				Model Data				
Observation Data			Nearby Weather	Nearest				
Obs.#	Location	Date	Stage	Station	Event	Date	Relevance	
1	https://www.inaturalist.org/observations/6609085							
	Edina, MN	06/12/17	Adult	E3700 Minneapolis, MN	50% Adult Emerg.	06/13/17	Obs. in accord with model prediction	
2	https://www.inaturalist.org/observations/34308243							
	Medina, MN	06/12/18	Adult	C6928 Plymouth, MN	50% Adult Emerg.	06/11/18	Obs. in accord with model prediction	
3	https://www.inaturalist.org/observations/28398084							
	Benton, NH	07/07/19	Adult	NHLRV Lost River, NH	10% Adult Emergence	07/07/19	Obs. in accord with model prediction	
4	https://www.inaturalist.org/observations/26090896							
	Brooklyn, NY	05/30/19	Adult	KJRB Manhattan, NY	50% Adult Emerg.	05/29/19	Obs. in accord with model prediction	
5	https://www.inaturalist.	org/observations/90	092221					
	Minnetonka, MN	05/15/14	Adult	C5102 Minnetonka, MN	10% Adult Emergence	05/13/14	Obs. in accord with model prediction	
6	https://www.inaturalist.	org/observations/71	151234					
	Duluth, MN	06/21/08	Adult	MN082 Duluth, MN	90% Adult Emergence	07/26/08	Obs. in accord with model prediction	
7	https://www.inaturalist.	org/observations/64	468180					
	Brattleboro, VT	06/02/17	Adult	BBOV1 Brattleboro, VT	10% Adult Emergence	06/11/17 (but close	Obs. in accord with model prediction e to est. of 1 st emerg. Of 5/31/17)	
8	https://www.inaturalist.org/observations/3415672							
	Omaha, NE	06/04/16	Adult	D9161 Bellevue, NE	90% Adult Emergence	06/09/16	Obs. in accord with model prediction	

Results : All 8 available observations from 5 states are within the range for adult emergence predicted by the model, and thus help to validate the model.

Discussion: Further validation data are needed, preferably these would be research quality monitoring of appearance of new exit holes over the duration of adult emergence, from more than one state, especially near edges of this insects' distribution.